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Abstract—This paper shows that under certain conditions
of incoming jitter in clock and data recovery circuits (CDR),
the bang-bang phase detector (BBPD) gain can rise even for
increments in the channel loss. Even more, it is shown how the
BBPD gain can increase when sinusoidal and uniform jitter noise
are combined; impacting on the CDR dynamic response. These
observations are not clearly reported in the literature and here
are presented in two approaches. First, direct measurements by
using an extraction procedure that allows get the BBPD gain and
second, by presenting an explanation through the convolution of
probability density functions.

I. INTRODUCTION

Several high speed links applications incorporate CDR
circuits at the receiver end (RX); USB3.1, PCIexpress and
serial advanced technology attachment (SATA) are examples
of those applications. Digital phase-locked loop (DPLL) based
CDR is widely used due to the power efficient, flexibility
and effective functionality for Gb/s data links over analog
counterparts [1]–[4]. Addressing the design of DPLL-based
CDR requires clear understanding and proper simulation of the
basic equivalent linear model shown in Fig. 1; where KPD,
KV , KDPC , P and F are the BBPD gain, majority voting
gain, digital to phase converter (DPC) gain, proportional and
frequency path gains respectively. The parameter N represents
the latency for the whole system loop, φin and φout are the
input data phase and output clock phase respectively.

Fig. 1. Traditionally discrete linear model of a CDR system.

Open loop transfer function is determined by the following
equation:

Ho(s) =

(
KPDKVKDPC

1− z−1

)(
P +

F

1− z−1

)
z−N (1)

KPD is the representation of a nonlinear block and is one
of the most sensitive parameter in Eq. (1); it changes under
different operation conditions such as jitter noise, transition
density (TD) and inter symbol interference (ISI) [3], [5]. This
parameter has high influence on the CDR dynamic response,

hence, the extraction of a proper KPD value is critical in order
to obtain correlated results between the linear model and the
actual behavior of the CDR. One scenario where KPD can
change is in the synchronization process. When CDR starts-up,
the data eye diagram is too closed, then, lots of bits are lost and
the data TD differs considerably from the average value of 0.5
for random data. Once the CDR circuit approaches to the lock
state the data eye diagram is opened, TD increases and KPD

increases too. On the other hand, KPD value also changes
depending of the incoming jitter noise. Both the amplitude and
the type of noise, modify this gain and therefore the system
frequency response.

II. JITTER NOISE AND EXTRACTION PROCEDURE

In the industry it is widely accepted that jitter is decomposed
into random and deterministic components that comprise the
end to end connections in a transmission link, example of
that is the standard for USB 3.1 [6]. Random sources exist as
gaussian noise generated by the transmitter and receiver PLL;
deterministic sources, are typically referred as uniform jitter
inherent to ISI in the channel and sinusoidal jitter from the
power supply [3], [7]. For example, Fig. 2 shows the effect
of noise on KPD gain for different types of noise sources.
Fig. 2(a) corresponds to gaussian noise which is characterized
by the standard deviation σgaussUI (Unit Interval); Fig. 2(b)
refers to uniform noise with DjppUI and sinusoidal noise
described through Sjpp which are the peak-peak amplitude of
the distributions. For all cases, as noise level increases KPD

decreases in a nonlinear manner.
Several analyses have been performed to relate the gaussian

and uniform jitter noise with the KPD gain and are well
summarized in references [8]–[10]. However, the nonlinear
reduction for the sinusoidal case is not clearly reported in
the literature. This paper shows and explains how the KPD

can increases even for higher values of incomming jitter or
channel loss when the sinusoidal jitter is taking into account.
In order to accomplish that, first of all, an extraction procedure
that allows to extract the KPD gain is implemented.

The diagram to accomplish the task of extracting KPD are
shown in Fig. 3. TX module represents the transmitter. This
module contains a clocked pseudo-random binary sequence
(PRBS) that can be programmable; in this work a PRBS-7
is used. The clock is generated by the Clk module and it is
possible to select between clean or noisy clock through Noise
sources routines. Then, random data is passed to the testing
block composed by Test for BBPD a BBPD implementation
and another Clk module. To perform time simulation of the
procedure shown in Fig. 3 it is needed to select a proper
time step. In order to accomplish this, it is suggested at
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Fig. 2. KPD gain vs noise for: a) gaussian, b) uniform and sinusoidal case.

least an oversampling ratio (OSR) greater than 2. The Test
for BBPD block takes the data and clock and stimulates the
BBPD shifting the clock phase over all phases specified in the
system. The output average is taken and saved to compute one
point in the transfer curve of BBPD. The Post-processing block
calculates the KPD gain. The Noise Sources block allows to
select among any of the three types of noise mentioned before
in order to generate noisy clock signal.

Fig. 3. General view of the implementation.

III. IMPACT OF CHANNEL LOSS ON KPD

Channel loss is modelled with a simple linear first-order low
pass filter. This filter is characterized by a DC gain equal to
1 and a cut frequency denoted by fc. It is out of the scope of
this work to make a more precise modelling of the channel,
but the implementation of the linear filter is enough to extract
some results related to the impact on the performance of CDR
system. The magnitudes for input jitter noise used through

the rest of the paper are reasonable values based on the jitter
budgeting for the standard USB 3.1 [6].

A. Channel Loss with Gaussian Noise

Several cases are evaluated for different levels of gaussian
jitter noise. Fig. 4 shows the behavior of KPD as a function
of the degraded input data. Data degradation is quantified as
a relation between fc of the channel loss representation and
the data rate (Drate); denoted by fc/Drate. In this test, Drate
is equal to 10 Gb/s and σ = [0.03, 0.04, 0.05]UI. Simulations
are performed using the extraction procedure of Section II.

Fig. 4. KPD dependence on fc/Drate taking into account gaussian jitter
noise and channel loss.

The flat region in the curve corresponds to low channel
losses and the KPD values obtained in this region are different
because of the different noise levels used. On the other hand, as
the losses increase (low fc/Drate) the gain obtained decreases
due to the lots of transitions that are lost in the sampling
process done by the BBPD, especially for frames of Nyquist
data (10101...). For example, KPD decreases from 11.5 per UI
at fc = 4GHz to only 2 per UI at fc = 2GHz for a σ = 0.03UI
noise level. However, for low levels of fc/Drate also it exists
an increment of gain for high noise values. The explanation of
this effect is postponed until subsection D, so far, it is enough
to note that is due to the channel loss nature.

B. Channel Loss with Uniform Noise

Fig. 5 shows the simulation results when only the uniform
noise is considered. In this case, the injected jitter levels are
Djpp = [0.3, 0.4, 0.5]UI and Drate corresponds to 10 Gb/s.
For low channel loss, it is observed that KPD is higher
for less injected noise; however, gain falls drastically when
fc/Drate ≤ 0.25 for all noise levels. Also, the gain is no
longer higher for less noise; moreover, channel losses make
this gain to be higher for higher injected noise in some cases.
For example, KPD = 2.1 per UI when fc/Drate = 0.18 and
Djpp = 0.2UI, but for the same fc/Drate and Djpp = 0.3UI,
the gain has a little increment to 2.5 per UI. Thus, as in
the gaussian case, the behavior of the gain for high levels
of channel loss is not easy to predict.
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Fig. 5. KPD dependence on fc/Drate taking into account uniform jitter
noise and channel loss.

C. Channel Loss with Sinusoidal Noise

Fig. 6 shows simulation results for sinusoidal jitter noise.
Here, the gain increases as the channel loss does, before
the gain starts to fall, this is not evident from the behavior
expected and is explicit shown in the peaks of the curves.
Below some point, different for each noise level, the gain
decreases considerably. Also, similar to gaussian and uniform
noise, gain increases when the noise level injected is higher
at low fc/Drate values.

Fig. 6. KPD dependence on fc/Drate taking into account sinusoidal jitter
noise and channel loss.

The presence of these peaks when the channel losses
increase is due to the nature of the sinusoidal jitter noise.
Interesting explanation arises when the probability density
function (PDF) of noise is studied. The convolution of the
noise PDFs presented in the system allows to extract the KPD

in a theoretical manner [8]. The KPD gain corresponds with
the value of this convolution at 0 UI [3], [9]. Due to the
asymptotic behavior in the tails of a sinusoidal PDF, the total
convolution of all types of noise presented in the system shows
an irregular behavior at 0 UI. For example, Fig. 7 presents the
results obtained when sinusoidal and uniform noise are faced
at same time, which is a first approach when sinusoidal jitter
noise is injected to data corrupted by the channel losses. In
this case, the sinusoidal jitter noise is fixed at Sjpp = 0.4UI
level and the uniform Djpp ranges from 0.2 to 0.5 UI; also,

low Rj is added only for smoothing the curves. It is observed
in the curves that represent the total convolution that KPD

increases even if uniform jitter is increased as it is shown for
Djpp from 0.2 to 0.4 UI. This behavior is highlighted using an
extra curve that takes the KPD values from convolution and
plot them as a function of uniform noise. Finally, at some point
between 0.4 and 0.5UI the gain reaches its maximum and goes
down. Therefore, the peaking of gain due to the increment of
channel losses is due to the interaction between these losses
and sinusoidal noise.

Fig. 7. Total convolution of PDFs fixing Sjpp = 0.4 and Rj = 0.02.
Upper-right plot indicates KPD values as function of Djpp.

The unexpected behavior of KPD for high channel losses
with sinusoidal noise impacts on the dynamic of the system.
Here, the case for Sjpp = 0.1 UI presented in Fig. 6, is
exercised for no channel loss and for fc/Drate = 0.35 which
correspond to the peaking in KPD. Parameters others than
KPD in the model of Fig. 1 are taken from the 5 Gb/s
experiment presented in [1]. The jitter transfer function (JTF)
for the digital CDR model is:

JTF =
Ho

1 +Ho
, (2)

where Ho is the open loop gain given by the Eq. (1).
The results are presented in Fig. 8. In the first case, no

channel losses are considered and the KPD associated is 6.6
per UI (flat region in Fig. 6), producing a frequency response
with a 1MHz bandwidth. In contrast, case for fc/Drate =
0.35 produces a KPD of 8.5 per UI and a bandwidth of 1.3
MHz approximately. These results show that even with more
channel loss, the CDR bandwidth is higher, an unexpected
result that is not reported in the literature. The jitter tolerance
function (JTOL) is given by the following equation:

JTOL(z) =
∣∣∣ γ

1− JTF (z)

∣∣∣, (3)

where γ is the timing margin in the data eye in terms of UI
and JTF is given by Eq. 2.

For high frequencies JTOL is limited by γ margin and
is related directly with the amount of noise; it is shown
in Fig. 8(b) that for higher noise levels the margin is less.
However, for low frequencies, the case that corresponds to
higher sinusoidal noise presents a higher JTOL.
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Fig. 8. Impact of channel loss reflected on a) JTF and b) JTOL.

D. Channel Loss Probability Density Function

Probability density function for channel losses is a type of
deterministic noise, but modelling it with merely an uniform
PDF does not allow to understand the another interesting
behavior observed at low values of fc/Drate in Figs. 4, 5 and
6. For some low values of fc/Drate the channel loss seems
to be dominant and the gain is higher even for greater injected
noise. This phenomenon suggests that channel losses are not
well modelled with an uniform distribution. For this reason,
the actual PDF implemented here is extracted and added to
the total convolution of PDFs in order to explain the results
observed with time simulation measurements at low levels of
fc/Drate.

Time simulations are used to extract jitter noise due only
for channel losses, then, a fitting procedure is made to obtain
the PDF. To validate the correct model implemented, theoreti-
cal extraction of KPD is contrasted with simulation results
using the extraction procedure. For instance, Fig. 9 shows
regions for low fc/Drate conditions using the gaussian case
of Fig. 4. In this region, KPD is no longer less for high
injected noise. Using the extracted PDF for channel loss, total
convolution includes this PDF and are added in the plot in
order to show the correlation with the time simulations. Fig. 9
corresponds to gaussian noise plus channel loss, in this figure
fc/Drate ≈ 0.23 was selected for explanation; this value
corresponds to a set of three PDFs, one for each gaussian
noise condition. Results presented by time simulations (left)
are the same obtained with the convolution approach (right);
thus, the model used for channel loss is better than use only
uniform PDF and can explain the unexpected behavior for low

levels.

Fig. 9. Time simulations results vs convolution approach for gaussian noise
at low fc/Drate levels. The Conv graph in the right corresponds to the
convolution of gaussian PDF and the extracted PDF at fc/Drate ≈ 0.23.

IV. SUMMARY

An extraction procedure was used to get actual value of
the KPD under different conditions of incoming jitter and
channel loss. Nonevident increasing in KPD for some cases
where the incoming jitter is increased too, is explained through
the extraction and analysis of the PDF for channel loss. Also,
an increment on KPD where sinusoidal and uniform jitter are
combined is explained and its impact on the CDR dynamic
response is presented. As a final comment, maximum KPD

value is not always reached at 0UI and this suggests that for
some conditions, phase sampling point of the data can be
changed from 0 UI to the point where a maximum occurs,
improving CDR response.
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